ISL6622
The total gate drive power losses are dissipated among the
resistive components along the transition path, as outlined in
Equation 4. The drive resistance dissipates a portion of the
total gate drive power losses, the rest will be dissipated by the
external gate resistors (R G1 and R G2 ) and the internal gate
resistors (R GI1 and R GI2 ) of MOSFETs. Figures 6 and 7 show
the typical upper and lower gate drives turn-on current paths.
help minimize such unwanted stress. The following advice is
meant to lead to an optimized layout:
? Keep decoupling loops (LVCC-GND and BOOT-PHASE)
as short as possible.
? Minimize trace inductance, especially low-impedance
lines: all power traces (UGATE, PHASE, LGATE, GND,
LVCC) should be short and wide, as much as possible.
P DR = P DR_UP + P DR_LOW + I Q ? VCC
(EQ. 4)
? Minimize the inductance of the PHASE node: ideally, the
P DR_UP = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI1 + R EXT1 R LO1 + R EXT1 ?
P DR_LOW = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
? R HI2 + R EXT2 R LO2 + R EXT2 ?
? R HI1 R LO1 ? P Qg_Q1
? R HI2 R LO2 ? P Qg_Q2
2
2
source of the upper and the drain of the lower MOSFET
should be as close as thermally allowable.
? Minimize the input current loop: connect the source of the
lower MOSFET to ground as close to the transistor pin as
feasible; input capacitors (especially ceramic decoupling)
should be placed as close to the drain of upper and source
R EXT1 = R G1 + -------------
N
R EXT2 = R G2 + -------------
N
R GI1
Q1
R GI2
Q2
of lower MOSFETs as possible.
In addition, for improved heat dissipation, place copper
underneath the IC whether it has an exposed pad or not. The
.
UVCC
BOOT
C GD
D
copper area can be extended beyond the bottom area of the
IC and/or connected to buried power ground plane(s) with
thermal vias. This combination of vias for vertical heat
escape, extended surface copper islands, and buried planes
R HI1
R LO1
G
R L1
R G1
C GS
C DS
Q1
combine to allow the IC and the power switches to achieve
their full thermal potential.
Upper MOSFET Self Turn-On Effect at Start-up
S
PHASE
FIGURE 6. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
LVCC
D
Should the driver have insufficient bias voltage applied, its
outputs are floating. If the input bus is energized at a high
dV/dt rate while the driver outputs are floating, due to
self-coupling via the internal C GD of the MOSFET, the gate
of the upper MOSFET could momentarily rise up to a level
greater than the threshold voltage of the device, potentially
turning on the upper switch. Therefore, if such a situation
R HI2
R LO2
G
R L2
C GD
R G2
C GS
C DS
Q2
could conceivably be encountered, it is a common practice
to place a resistor (R UGPH ) across the gate and source of
the upper MOSFET to suppress the Miller coupling effect.
The value of the resistor depends mainly on the input
voltage’s rate of rise, the C GD /C GS ratio, as well as the gate-
source threshold of the upper MOSFET. A higher dV/dt, a
S
FIGURE 7. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
Application Information
lower C DS /C GS ratio, and a lower gate-source threshold
upper FET will require a smaller resistor to diminish the
effect of the internal capacitive coupling. For most
applications, the integrated 20k Ω resistor is sufficient, not
affecting normal performance and efficiency.
– V
?
---------------------------------- ?
? dV ?
V GS_MILLER = ------- ? R ? C rss ? 1 – e dt
iss ?
------ ? R ? C
Layout Considerations
During switching of the devices, the parasitic inductances of
the PCB and the power devices’ packaging (both upper and
lower MOSFETs) leads to ringing, possibly in excess of the
dV
DS
dt ? ?
? ?
? ?
(EQ. 5)
absolute maximum rating of the devices. Careful layout can
R = R UGPH + R GI
C rss = C GD
C iss = C GD + C GS
The coupling effect can be roughly estimated with
Equation 5, which assumes a fixed linear input ramp and
neglects the clamping effect of the body diode of the upper
drive and the bootstrap capacitor. Other parasitic
9
FN6470.2
October 30, 2008
相关PDF资料
ISL6801ABT IC DRIVER HISIDE BOOTSTRAP 8SOIC
ISL78100ARZ IC LED DRIVER AUTOMOTIVE 20-QFN
ISL8013AEVAL2Z EVAL BOARD 2 FOR ISL8013A
ISL8014AEVAL2Z EVAL BOARD 2 FOR ISL8014A
ISL8022EVAL2Z EVAL BOARD 2 FOR ISL8023
ISL8088EVAL2Z EVAL BAORD FOR ISL8088
ISL8105BEVAL2Z EVALUATION BOARD FOR ISL8105B
ISL8112EVAL1Z EVALUATION BOARD FOR ISL8112
相关代理商/技术参数
ISL6622CRZ 功能描述:IC MOSFET DRVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:6,000 系列:*
ISL6622CRZ-T 功能描述:IC MOSFET DVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:95 系列:- 配置:半桥 输入类型:PWM 延迟时间:25ns 电流 - 峰:1.6A 配置数:1 输出数:2 高端电压 - 最大(自引导启动):118V 电源电压:9 V ~ 14 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:8-SOIC(0.154",3.90mm 宽) 供应商设备封装:8-SOIC 包装:管件 产品目录页面:1282 (CN2011-ZH PDF) 其它名称:*LM5104M*LM5104M/NOPBLM5104M
ISL6622IBZ 功能描述:IC MOSFET DRVR SYNC BUCK 8-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622IBZ-T 功能描述:IC MOSFET DRVR SYNC BUCK 8-SOIC RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622IRZ 功能描述:IC MOSFET DRVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6622IRZ-T 功能描述:IC MOSFET DRVR SYNC BUCK 10-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - MOSFET,电桥驱动器 - 外部开关 系列:- 标准包装:50 系列:- 配置:高端 输入类型:非反相 延迟时间:200ns 电流 - 峰:250mA 配置数:1 输出数:1 高端电压 - 最大(自引导启动):600V 电源电压:12 V ~ 20 V 工作温度:-40°C ~ 125°C 安装类型:通孔 封装/外壳:8-DIP(0.300",7.62mm) 供应商设备封装:8-DIP 包装:管件 其它名称:*IR2127
ISL6625ACRZ 制造商:Intersil 功能描述:Synchronous Rectified Buck MOSFET Drivers
ISL6625ACRZ-T 制造商:Intersil Corporation 功能描述:LEAD-FREE VERSION OF ISL6625A 8LD DFN 2 X 2 - Tape and Reel 制造商:Intersil Corporation 功能描述:IC MOSFET DRVR SYNCH RECT 8DFN 制造商:Intersil 功能描述:Synch. Rect. Buck MOSFET Driver